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Crossover from the dilute to the dense phase for
self-repelling polymer chains: finite size effects and relation
to zero-component Landau–Ginzburg–Wilson theory
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† Fachbereich Physik, Universität Essen, 45117 Essen, Germany
‡ Fachbereich Physik, Universität Wuppertal, 42097 Wuppertal, Germany

Received 28 November 1996

Abstract. Using a recently established perturbative approach we analyse a single polymer
chain or a few chains floating in a good solvent contained in a finite box with periodic boundary
conditions. We calculate to one-loop order the partition function and the equation of state
relating segment concentration to segment chemical potentialµ̂s , and we discuss in detail the
chain length distribution for a ‘field theoretic’ ensemble of chains characterized by fixedµ̂s .
Our results obey finite size scaling and cover the whole crossover from the dilute(µ̂s < µ̂∗s )
to the dense(µ̂s > µ̂∗s ) limit, where µ̂∗s is the critical chemical potential. The different limits
evolve smoothly from one another. The theoretical results for the chain length distribution are
compared with Monte Carlo simulations of self-avoiding walks on a cubic lattice. We find a
good agreement between our results and the simulation data.

1. Introduction

We consider a polymer solution characterized by the number concentration of chainscp
and the average polymerization index (chain length)N . If we are in the excluded volume
regime, where the individual monomers repel each other, the macromolecules in solution
form random coils of average sizeR = R(N, cp). The radius increases with increasingN ,
and for an isolated coil(cp = 0) we asymptotically find the power law

R(N, cp) ∼ Nν

whereν ≈ 0.588 ind = 3 dimensions. Indeed, in the limit of infinite chain lengthN →∞
and vanishing segment concentrationc = cpN → 0 the system becomes ‘critical’. It shows
power laws and scaling behaviour.

This critical behaviour can be analysed with the help of the renormalization group, as
established in the standard-field theory of critical phenomena. As is well known, a special
grand canonical ensemble of polymers in solution is closely related to the field theory [1–3].
This ensemble contains chains of all lengthsn and is specified by the chemical potential

µ̂(n) = µp + µ̂sn. (1)

(Here and in the following, carets are used to distinguish quantities referring to discrete
chains from their counterparts for the continuum limit.) To all orders of the perturbation
theory in the repulsive monomer interaction it is identical to a Landau–Ginzburg–Wilson
(LGW) field theory in the formal limit of a zero-component vector fieldS. Chain fugacity
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eµp or segment chemical potentialµ̂s is related to the magnetic fieldh or the bare massm0

of the LGW-model:

eµp ∼ h2

µ̂s ∼ −m2
0.

The polymer concentration is formally given as

cp = 1
2hM (2)

whereM is the magnetization density, and the segment concentration is related to the
energy density

c ∼ 〈S2〉.
The average chain length follows fromN = 〈n〉 = c/cp. The critical limit N → ∞,
c → 0 is mapped onto the critical pointh → 0, m2

0 = m∗20 . The ‘paramagnetic’ phase
h→ 0,m2

0 > m∗20 , i.e. µp →−∞, µ̂s < µ̂∗s , corresponds to the dilute limit where a single
finite macromolecule floats in the infinite volume. The ‘ferromagnetic’ phaseh → 0,
m2

0 < m∗20 , i.e. µp → −∞, µ̂s > µ̂∗s , describes the semidilute limit, where an infinite
number of infinitely long chains maintains a finite segment concentrationc in the infinitely
large container. For dimensionsd > 2, which is the case exclusively considered in this
paper, the polymer coils strongly overlap in the semidilute limit.

So far we have described standard results found in the normal thermodynamic limit: the
linear size,L, of the container is taken to infinity first withcp, N—orµp, µ̂s , equivalently—
kept fixed. However, we may take the limitL→∞ also in such a way that a finite number
of chains (a single chain in the extreme case) maintains a finite segment concentration.
This is the so-called dense limit. Since to leading orderc ∼M2, the limit c = constant,
cp ∼ L−d → 0 via equation (2) implies that we coupleh to L such thath ∼ L−d → 0.
KeepingM2 > 0, we again approach the magnetization curve, working atµ̂s > µ̂∗s ,
i.e. m2

0 < m∗20 . It must be noted that for finiteL the relationh ∼ L−d identifies the
smallest value ofh of physical relevance: ForL <∞ andh ≡ 0, there is no chain in the
system. Thus, in some sense the dense limit is the best we can do to realize ‘spontaneous’
symmetry breaking in the ‘ferromagnetic’ phase. The contribution of the external field,h,
to the magnetic energy is of the order of

LdhM = O(1)

so thath barely breaks the O(m) symmetry of the LGW-model inm-component spin space.
In the dense limit the average chain length is an extensive quantity:N ∼ Ld . Since the
radius of a chain in infinite volume obeysR ∼ Nν , ν > 1

2, this impliesR ∼ Lνd � L for
L→∞, d > 2. Thus, the dense limit is closely related to finite size effects, which show up
if the infinite volume correlation length in a finite system is not small compared with the size
of the system. More precisely, it is related to finite size effects in the ferromagnetic phase of
the LGW-model. While such effects in the paramagnetic phase are well understood [4–6],
some progress on the treatment of the ferromagnetic phase has been made only recently
[6, 7]. The problem is complicated by the fact that spontaneous symmetry breaking strictly
arises only in the limitL→∞. Furthermore, for a LGW-model not of Ising-type additional
complications arise due to the Goldstone modes of the broken O(m) symmetry. In a previous
publication [8] one of the present authors considered these problems in the polymer context.
For d > 2 it was found that the dense limit can be handled within a perturbative approach,
provided we do not work with the field theoretic ensemble (1) but with a canonical ensemble
of sharp chain lengthsn ∼ Ld . (In the field-theoretic analogy this amounts to transforming
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the canonical ensemble to a microcanonical ensemble of fixed energy density.) Assuming
periodic boundary conditions, a reformulation of the (unrenormalized) perturbation theory
was derived which eliminates dangerous zero modes and incorporates the screening of the
Goldstone singularities. A simple treatment of finite size effects arises. The results can
be transformed to the field theoretic ensemble at the end of the calculation. It was found
that the dense limit ford > 2 does not yield a qualitatively new phase, but all density
correlations and the free energy smoothly evolve from the normal semidilute limit. In terms
of m-component field theory this implies that we can handle O(m)-invariant quantities.

This present paper reports on a harder test of the theory. We concentrate on a quantity
for which the semidilute limit or the dense limit necessarily yield very different results,
discussing the chain length distribution in the field theoretic ensemble. In the dilute limit
the probability of finding a chain of lengthn in the ensemble defined by the chemical
potential (1) is known from the early days of the polymer–magnet analogy:

P(n) ∼ nγ−1e−γ n/N . (3)

Here γ ≈ 1.157 (d = 3) is a standard critical exponent. In the normal semidilute limit
P(n) reduces to an exponential distribution

P(n) ∼ e−n/N . (4)

In the dense limit for a single chain, however,P(n) becomes sharp

P(n) ∼ δ
( n
Ld
− c̄

)
(5)

reflecting the fact that the segment density for given chemical potentialµ̂s is a macroscopic
thermodynamic observable. The crossover of expressions (3) and (4) was discussed in [9].
We here analyse the crossover towards expression (5), showing the perturbation theory of
[8] in the renormalized form at work. We include finite size effects and establish finite size
scaling. Extending the work of [10] we present new simulation results which quantitatively
agree with our scaling functions which are calculated to one-loop order. Our results again
illustrate that the dense limit is smoothly connected to the semidilute limit, even if we
consider a quantity taking such different asymptotic forms as equations (4) or (5).

The dense limit is related to recent work on self-avoiding walks ‘transversing a
hypercube’ [11–14]. That work considers an ensemble of single self-avoiding walks on
a lattice, fixed with the ends to opposite corners of a hypercube of linear sizeL. The step
number of the walks is governed by a chemical potentialµ̂s . In the thermodynamic limit
a second-order phase transition is found, separating a dilute phaseN ∼ L, c ∼ L1−d → 0
from a dense phaseN ∼ Ld , c > 0. This transition is driven by varyinĝµs . For d > 2
clearly the dense phase found there is identical to the dense phase considered here, since for
R ∼ nν = (cLd)ν � L the constraint fixing the chain ends should have no effect. Indeed,
as was found in [8], the chain ends effectively unbind in the dense limit. This also implies
that the critical values of̂µs must be the same. The dilute phases, however, are different
since here the constraint strongly stretches the chain:R ∼ L ∼ N , in contrast toR ∼ Nν ,
ν < 1 in the present problem.

The paper is organized as follows. In section 2 we define the model, and we derive
the one-loop order result for the partition function in renormalized perturbation theory. In
section 3 we exhibit the general scaling behaviour and discuss our results for the scaling
functions for the partition function, the chain length distribution and the equation of state
relating µ̂s to c. Section 4 compares our theoretical results with Monte Carlo simulations
and in section 5 we summarize our findings.
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2. Perturbation theory

2.1. The model

We consider a single polymer (random walk chain with effective segment repulsion) in a
d-dimensional hypercube,�, of linear sizeL. The Hamiltonian is written as

H = 1

4l2

n∑
λ=1

[r(λ)− r(λ− 1)]2+ û0

2

∫
�

ddr [ρ̂(r)]2 (6)

where λ labels then segments of average microscopic lengthl, û0 describes the bare
(repulsive) segment interaction and

ρ̂(r) =
n∑
λ=1

δd(r − r(λ)) (7)

stands for the total segment density. The partition function is given by

Ẑ(n) = (4πl2)d/2

�

∫
�

n∏
λ=0

ddr (λ)

(4πl2)d/2
e−H (8)

where the normalization guarantees that the partition function of a noninteracting chain
reduces toẐ(n, û0 = 0) = 1. For further calculations it is useful to take the continuous
chain limit

l→ 0
S = l2n
u0 = û0l

−4

}
fixed.

As a result summations over segment indices,λ, convert to integrals overs = λl2, and
after a Gaussian transformation linearizing the interaction term the single chain partition
function, Ẑ(n), is replaced by

Z(S) = (4πl2)d/2

�

∫
D[ϕ]e−

1
2u0

∫
�

dd rϕ2(r)
∫
�

ddr ddr ′

(4πl2)d/2
G(r, r′, S, ϕ). (9)

The Green’s function

G(r, r′, S, ϕ) =
∫ r(S)=r

r(0)=r′
D[r(s)]e−

∫ S
0 ds [( dr (s)

2 ds )
2+iϕ(r(s))] (10)

integrates over all paths connecting the endpoints of the chain. By imposing periodic
boundary conditions on the container we expand the auxiliary fieldϕ(r) in normal modes
ψk(r)

ϕ(r) = √u0

∑
k

ϕ̃kψk(r) ψk(r) = L−d/2eikr

kα = 2π

L
κα κα = 0,±1,±2, . . . α = 1, . . . , d.

(11)

With the notation

Gkk(S, ϕ) = 〈ψk|G|ψk′ 〉 (12)

the partition function takes the form

Z(S) = 1√
2

∫ ∏
k

dϕ̃k√
π

e−
1
2

∑
k ϕ̃k ϕ̃−kG00(S, ϕ). (13)
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The field theoretic ensemble for a single chain is defined by the Laplace transform

ZF (µs) =
∫ ∞

0
dS eµsSZ(S) (14)

whereµs is related to the chemical potentialµ̂s in the discrete chain model via

µs = µ̂s l−2. (15)

In this ensemble the chain length is not fixed but characterized by the distribution

P(S, µs) = eµsS
Z(S)
ZF (µs)

. (16)

2.2. Unrenormalized perturbation theory

Standard finite size calculations in the paramagnetic phase of the LGW model proceed by
perturbative elimination of thek 6= 0 modes to find an effective potential for the zero
mode [4, 5]. This mode is then treated on a nonperturbative level. In the ferromagnetic
phase this approach runs into problems since the effective potential is highly singular, due
to the Goldstone modes of the broken O(m) symmetry. As has been shown in [8], for the
polymer case(m = 0) these problems can be overcome by eliminating the zero mode first
in a rigorous way, thus constructing an effective potential for thek 6= 0 modes which can
be dealt with perturbatively. We now apply this method to a calculation of the chain length
distribution or related quantities.

Starting from expression (13) for the partition function, we note that equation (10) is
just the path integral representation for the Green’s function of the diffusion equation

[∂/∂S −4r + iϕ(r)]G(r, r′, S, ϕ) = 0 (17)

with the initial condition

G(r, r′, S = 0, ϕ) = δd(r − r′). (18)

Since4r acts only on the nonzero modes, we can splitϕ̃0 off to find

G(r, r′, S, ϕ) = e−i
√
u0/Ld ϕ̃0SG(r, r′, S, ϕ′) (19)

whereϕ′ contains onlyk 6= 0 modes. Then the zero mode can be integrated out to yield

Z(S) = e−
u0S

2

2Ld

∫ ∏
k 6=0

dϕ̃k√
π

e−
1
2

∑
k 6=0 ϕ̃k ϕ̃−kG00(S, ϕ

′). (20)

G00 can be formally expanded as

G00(S, ϕ
′) = 1+

∞∑
j=2

(−i)juj/20 L−jd/2
∑

k1,...,kj−1

A(1, j − 1)Jj (21)

where

A(1, j) = ϕ̃k1ϕ̃k2−k1 . . . ϕ̃kj−kj−1ϕ̃−kj (22)

Jj =
∫

0<s1<···<sj<S
exp{−(sj − sj−1)k

2
j−1− · · · − (s2− s1)k2

1} (23)

and ϕ̃0 ≡ 0. This constraint ensures that successive valueskj = 0 are separated by at least
one valuekj 6= 0. Thus, the general form of a contribution toG00(S, ϕ

′) is a product of
a number of ‘irreducible’ pieces, containing onlyk 6= 0 propagators, connected by single
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k = 0 propagators which cannot transport any correlation: the chain effectively decomposes
into uncorrelated irreducible pieces.

As shown in [8] we may then resum the expansion to find an effective interaction for
the ϕ̃k,k 6= 0, consisting only of irreducible pieces:

Z(S) = e−
u0S

2

2Ld

∫ ∏
k 6=0

dϕ̃k√
π

e−L[ϕ̃]

L[ϕ̃] = 1
2

∑
k 6=0

ϕ̃k

(
1+ 2u0L

−d
∫

0<s1<s2<S
ds1 ds2 e−(s1−s2)k

2

)
ϕ̃−k + iu3/2

0 L−3d/2

×
∑

k1,k2 6=0
k2−k1 6=0

ϕ̃k1ϕ̃k2−k1ϕ̃−k2

∫
0<s1<s2<s3<S

ds1 ds2 ds3e−(s3−s2)k
2
2−(s2−s1)k2

1 + · · · .

(24)

To one-loop order we keep only the contribution toL[ϕ̃] quadratic in ϕ̃. The resulting
Gaussian integral yields formally

Z(S) = exp

(
−u0S

2

2Ld
− 1

2

∑
k 6=0

ln

(
1+ 2u0S

k2Ld
+ 2u0

e−k
2S − 1

k4Ld

))
. (25)

For d > 2 the summation over large values ofk yields a divergent contribution. This is
a standard ultraviolet singularity which has to be eliminated by a mass subtraction. In the
present problem it arises from taking the continuous chain limit. We thus extract from the
summation a critical chemical potential

µ∗s =
1

2

∑
k 6=0

2u0S

k2Ld
(26)

which is absorbed, when taking the Laplace transform, into a redefinition ofµs :

µs − µ∗s = −Es. (27)

This yields the generalized partition function

ZG(S, µs)
def= eµsSZ(S)

= exp

(
− EsS − u0S

2

2Ld
− 1

2

∑
k 6=0

[
ln

(
1+ 2u0S

k2Ld
+ 2u0

e−k
2S − 1

k4Ld

)
− 2u0S

k2Ld

])
.

(28)

In the following,ZF andP (see equations (14) and (16)) will be considered as functions
of Es instead ofµs . Thus,ZF (Es) is found by integratingZG(S,Es) over S

ZF (Es) =
∫ ∞

0
dS ZG(S,Es) (29)

andP(S,Es) is given by the ratioZG(S,Es)/ZF (Es). The segment density is derived as

c(Es) = 1

Ld
〈S〉 = −L−d ∂

∂Es
lnZF (Es) (30)

which yields the equation of state relating concentration and chemical potential.
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It may be appropriate to mention the order of the terms kept in equation (28). The loop
expansion proceeds in powers ofu0, but takingu0S/L

d of the order of 1 fixed. Thus the
leading zero-loop term in fact is of the order ofLdu−1

0 :

u0S
2

Ld
= Ld

u0

(
u0S

Ld

)2

.

The one-loop correction is of the order ofLd(u0)
0, the factorLd being contributed by the

summation overk. The neglected two-loop term would be of the order ofu0L
d .

2.3. Renormalization

When approachingd = 4 the theory shows ultraviolet singularities which have to be
eliminated by (multiplicative) renormalization. These singularities are related to the short
distance behaviour of the theory and are independent of constraining the system to finite
volume [4]. We can therefore take over the standard infinite volume renormalization scheme
[15].

We define a renormalized length scalelR = λl and replaceS,Es, u0 by their
renormalized counterpartsnR,ER, u according to

S = nRl2RZn
u0 = (4π)d/2ul−εR Zu
Es = ERl−2

R Z
−1
n .

(31)

The renormalized form of the partition functions is then given by

Z (R)(nR, u, lR) = Zn

Z
Z(S, u0, l)

Z (R)G (nR,ER, u, lR) = Zn

Z
ZG(S,Es, u0, l).

(32)

The renormalization constantsZ,Zn, andZu are determined as functions ofu by requiring
thatZ (R)G is finite in four dimensions. Using minimal subtraction we find

Zn = 1− 1

ε
u+O(u2)

Zu = 1

2

(
1+ 4

ε
u+O(u2)

)
Z = 1+O(u2)

(33)

where ε = 4 − d. Substituting all these results into equation (28) forZG(S,Es) and
consistently expanding with respect tou we obtain

Z (R)G = exp

{
− ERnR − ũ

2

(
lR

L

)d
n2
R

(
1+ 2

ε
u

)
− 1

ε
u

−1

2

∑
k 6=0

[
ln

(
1+ 2ũl2−εR nR

k2Ld
+ 2ũ

e−k
2nRl

2
R − 1

lεRk
4Ld

)
− 2ũl2−εR nR

k2Ld

]}
(34)

with ũ = (4π)d/2u/2. This is our basic perturbative result.
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3. Scaling laws and results for the scaling functions

3.1. Scaling in the excluded volume limit

Physical observables are independent of the choice of the arbitrary renormalized length
scale lR. Any change oflR must be compensated by a change ofu, nR,ER. The flow
equations governing the change ofu, nR,ER with changinglR are derived by taking the
logarithmic derivative with respect tolR of these quantities, keeping all unrenormalized
quantitiesu0, S, Es fixed. ForlR →∞ this flow drivesu = u(lR/ l) to a fixed point value
u∗ that governs the behaviour of long self-repelling chains. In the sequel we will restrict
ourselves to this ‘excluded volume limit’. Using the full renormalization group mapping, as
given for instance in [15], it is also possible to evaluate the ‘corrections to scaling’ resulting
from u 6= u∗ but u ∼ u∗, or even the full crossover from noninteracting chains(u = 0) to
excluded volume chains(u = u∗). With respect to the Monte Carlo data, presented in the
next section, however, such corrections seem to be of no importance, and we therefore stay
with the simple fixed point behaviour.

Evaluated at the fixed pointu = u∗, the mapping from unrenormalized to renormalized
variables reads

nR =
(
B

lR

)1/ν

n

ER = (µ̂∗s − µ̂s)
(
lR

B

)1/ν

Z/Zn =
(
lR

B1

)(γ−1)/ν

(35)

where we switched back to the notation holding for the discrete chain model. The parameters
B,B1 are independent ofn or µ̂s , but depend on the microstructure of the system.

We can now construct the scaling laws. Simple dimensional analysis yields

ẐG(n, µ̂s) = e(µ̂s−µ̂
∗
s )n
Z

Zn
Z (R)

(
nR,

lR

L

)
. (36)

By inserting equation (35) and fixinglR by the choicenR = 1 for simplicity, we find the
scaling law

ẐG(n, µ̂s) = nγ−1e(µ̂s−µ̂
∗
s )nZ∗

(
Bnν

L

)
. (37)

In the same way we find for the chain length distributionP , the segment concentrationc,
or the chemical potential̂µs ,

P(n, µ̂s) = (µ̂∗s − µ̂s)γ nγ−1P ∗
(
n

N
,
BNν

L

)
c(µ̂s) = L−d

µ̂∗s − µ̂s
c∗
(
(µ̂s − µ̂∗s )

(
L

B

)1/ν
)

µ̂s − µ̂∗s =
1

N
E∗
(

N

(L/B)1/ν

)
.

(38)

Recall that for the single chain system consideredN/Ld is just the average segment
concentrationc. The results show the typical features of finite size scaling [16]: a quantity
X(t) scaling in the infinite volume limit with the distancet to the critical point(t = 0) like

X∞(t) = t−ρX∞
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should in the finite volume scale like

XL(t) = t−ρX∗L
(
t−ν

L

)
.

In our polymer caset corresponds to an inverse chain length orµ̂∗s − µ̂s , respectively.

3.2. Qualitative form of the scaling function

The perturbation theory breaks the scaling invariance, and low-order approximations to
scaling functions such asZ∗, P ∗, . . . explicitly depend on our choice oflR. In the spirit of
Wilson’s renormalization approach we should chooselR as large as possible, but not larger
than the smallest macroscopic length scale of interest. Otherwise we would absorb into
the effective renormalized segment physical effects which should be explicitly kept in the
theory. The present problem possesses two important length scales: the radius of gyration

R2
g ∼ nRl2R

gives the range of excluded volume correlations in the dilute limit. At finite concentration
its role is taken over by the screening length

ξ2
E ∼

l2R

cR

where

cR = ũ∗ 1

Ld
nRl

d
R (39)

stands for the renormalized segment concentration.lR should interpolate among these two
scales, which suggests a choice

l−2
R ∼

1

R2
g

+ 1

ξ2
E

.

Multiplying by l2R we find the precise form of our crossover relation

1= n0

nR
+ cR
c0
. (40)

The parametersn0, c0 reflect the fact that our qualitative considerations fixlR only up to
numerical factors of the order of 1. Since the theory, if evaluated to all orders, is independent
of lR and thus ofn0 andc0, these parameters can be determined by requiring that universal
ratios calculated to one-loop order become insensitive to their precise choice. Corresponding
considerations [17] suggest the values

n0 = 0.53

c0 = 1.2.
(41)

For the derivation of the scaling laws (equations (36), (37)) the choicenR = 1 and the
crossover relation (40) are of course equivalent. For simplicity we first discuss in detail
the chain length distribution to zero-loop order and we give the full one-loop order results
afterwards. We thus consider the tree level result for the partition function (cf (34))

ẐG(n, µ̂s) = Z

Zn
exp

(
−ERnR − ũ

∗

2

(
lR

L

)d
n2
R

)

=
(
lR

B1

)γ−1
ν

exp

(
(µ̂s − µ̂∗s )n−

ũ∗

2Ld
l
d−2/ν
R n2B2/ν

)
. (42)
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3.2.1. Dilute limit. For µ̂s < µ̂∗s and largeL the renormalized segment concentrationcR
vanishes proportional to(Bnν/L)d and equations (40) and (35) yieldnR = n0, lR = Bnν .
The partition function forL→∞ becomes

ẐG(n, µ̂s) = constant· n(γ−1)e(µ̂s−µ̂
∗
s )n (43)

which is the known result for the dilute limit. The scaling form (36) ensures that this result
is correct to all orders of the perturbation theory.

For the average segment concentration and the chain length distribution we obtain
respectively

c(µ̂s) = N

Ld
= L−d γ

µ̂∗s − µ̂s
→ 0

P(n, µ̂s) = (µ̂∗s − µ̂s)γ
0(γ )

nγ−1e−n(µ̂
∗
s−µ̂s )

= γ γN−γ

0(γ )
nγ−1e−γ

n
N . (44)

3.2.2. Dense limit. For µ̂s > µ̂∗s in the limit of largeL the first term on the right-hand
side of the crossover relation (40)

1= n0

B1/νnl
−1/ν
R

+ ũ
∗B1/νnl

d−1/ν
R

c0Ld
(45)

can be neglected to give

lR(c) =
(
ũ∗

c0
B1/νc

)ν/(1−νd)
. (46)

The generalized partition function to zero-loop order becomes

ẐG(n, µ̂s) = B
1−γ
ν

1

(
ũ∗

c0
B1/ν n

Ld

) γ−1
1−νd

× exp

(
−Ld

[
(µ̂∗s − µ̂s)

n

Ld
+ ũ

∗

2
B2/ν

(
ũ∗B1/ν

c0

)νd−2
1−νd ( n

Ld

) νd
νd−1

])
. (47)

For largeL the maximum of this distribution is at

n̄

Ld
= c̄(µ̂s) =

 (µ̂s − µ̂∗s ) ( νd−1
νd

)
c0
2

(
ũ∗
c0

) 1
νd−1


νd−1

B−d . (48)

Using the method of steepest descent to evaluate the normalizationZF (equation (29)) it is
easily seen that due to (48) the chain length distribution forL→∞ tends to theδ-function

P(n, µ̂s)→ δ
( n
Ld
− c̄

)
. (49)

Because of equation (48) this way of taking the dense limit is equivalent toL → ∞ at a
fixed chemical potential̂µs > µ̂∗s per segment.

The reduced width of the segment density distribution defined asσ 2 = 〈n2〉−〈n〉2
n̄2 scales

like σ ∼ L−d/2. As expected,c = n/Ld in the dense limit becomes a normal macroscopic
variable.
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3.3. One-loop order results

From the structure of the perturbative result (34) it is now clear that the one-loop order
corrections only change the quantitative form of the scaling functions, but introduce no new
qualitative features. We first consider the limitL→∞.

In the dense limit(µ̂s > µ̂∗s ) the renormalized chain length,nR, is proportional to
n ∼ Ld and we can neglect the term proportional tok−4 in equation (34) which vanishes
like L−d . We replace in leading order ofLd the sum by the integral. The generalized
partition function becomes

ẐG(n, µ̂s) =
(
lR

B1

)γ−1
ν

exp

(
−Ld

[
(µ̂∗s − µ̂s)

n

Ld
+ ũ

∗

2

( n
Ld

)2
B2/ν l

d−2/ν
R

(
1+ 2

ε
u∗
)

+0(1− d/2)
(2π)

d
2 d

( n
Ld

)d/2
(ũ∗B1/ν l

d−2−1/ν
R )d/2

])
. (50)

By inserting again equation (46), we recover

P(n, µ̂s)→ δ
( n
Ld
− c̄

)
(51)

with the one-loop order equation of state

c̄ =

 (µ̂s − µ̂∗s )
(
νd−1
νd

)
c0
2 (1+ 2

ε
u∗)

(
ũ∗
c0

) 1
νd−1 + 0(1−d/2)

(2π)
d
2 d
c
d/2
0

(
ũ∗
c0

) νd
νd−1


νd−1

B−d . (52)

For finite values ofL the sum in equation (34) cannot be replaced by an integral and must
be treated numerically including thek−4-term. This yields finite size corrections to results
(43) and (51). The result is illustrated in figures 1 and 2. In figure 1 the segment density
distributionP(c, µ̂s − µ̂∗s ) for a fixed chemical potential (µ̂s − µ̂∗s = 0.01) is plotted for
L = 64, 128, 256 and 512. It is clearly seen how the distribution tends to theδ-function.
The theoretical valuēc(0.01) = 0.0498 is marked by the vertical full line. Figure 2 shows
the finite size corrections to the equation of state forL = 64 andL = 128. The bulk curve
is marked by the full curve.

3.4. Crossover from the dense to the semidilute limit

To see the crossover from the dense limit for a single chain to the normal semidilute limit
we now consider an ensemble (µ̂s > µ̂∗s ) of m chains with chain lengthsn1 . . . nm in the
limit L→∞, ci = niLd fixed. In this limit the generalized partition function̂Z (m)G ({ci}, µ̂s)
is found to be independent of the numberm of chains but involves only the total segment
densityc =∑ ci [8]:

Ẑ (m)G (c1, . . . , cm, µ̂s) = ẐG
(∑

ci, µ̂s

)
. (53)

The probability of finding a chain of lengthn = cLd in the ensemble is given by(m > 2)

P (n = cLd, µ̂s) = L−d〈δ(c1− c)〉

= L−d
∫

dc1 . . .dcmδ(c1− c)ẐG(
∑
ci, µ̂s)∫

dc1 . . .dcmẐG(
∑
ci, µ̂s)

= L−d
∫∞
c

dc′ ẐG(c′, µ̂s) (c
′−c)m−2

(m−2)!∫∞
0 dc′ ẐG(c′, µ̂s) c′m−1

(m−1)!

. (54)
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Figure 1. Segment density distribution at fixed chemical potential(µ̂s − µ̂∗s = 0.01) for various
sizes of the container. The bulk value for the segment densityc̄(0.01) = 0.0498 is marked by
the full vertical line.
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Figure 2. Segment density as a function of the chemical potential(µ̂∗s − µ̂s ) for L = 64 and
L = 128. The bulk curve is marked by the full curve.

In the limit L→∞ the total segment density distribution〈
δ

(∑
ci − c

)〉
−→ δ(c − c̄(µ̂s)) (55)

becomes sharp with the equation of state (53) known from the dense limit. The chain length
distribution takes the form

P(n, µ̂s) = (m− 1)L−d

c̄(µ̂s)

(
1− n/Ld

c̄(µ̂s)

)m−2

θ
(
c̄(µ̂s)− n

Ld

)
. (56)
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In the limit of a large number of chainsm→∞ we obtain

P(n, µ̂s)→ 1

N
e−n/N N = c̄Ld

m
(57)

which is the well known exponential distribution for the semidilute limit.
We conclude, not only the dilute and the dense but also the semidilute and the dense

limit are connected smoothly. There is no sign of a ‘sharp’ transition.

4. Monte Carlo simulations

The theoretical results for the one-loop order partition function are compared with
Monte Carlo simulations of self-avoiding random walks on finite (linear dimensionL =
8, 16, 32, 64, 128, 256) three-dimensional cubic lattices with periodic boundary conditions.

These simulations were made with a growth algorithm similar to the one used in [10].
This is essentially a stochastic variant of the classic enrichment [18] algorithm, implemented
recursively. Chains are constructed by adding monomers one by one. To prolongate a chain
of lengthn, a random lattice direction is first chosen so that immediate U-turns are excluded.
If this direction does not lead to a violation of the self-avoidance constraint, a monomer
is added and the next prolongation step is attemped. Indeed, to implement the enrichment
idea, a flagIn is set with some probabilitypn, which indicates that the same chain is also
to be used in a second attempt. This is to overcome attrition. The latter happens since the
chosen direction might lead to a self-crossing. In this case, it is checked whether the flag
In is set. If it has been set, the second copy is started and the flag is cleared. If not, all
monomers added after the last set flag (sayIn′ ) are deleted, and the second copy branching
off at lengthn′ is started.

In comparison to [10] the present algorithm involves two main improvements. First,
as described above the recursion is implemented ‘by hand’, not by means of a recursive
function call. This is slightly faster and (this was more important) it uses much less memory.
In this way we could easily build chains withn > 2×105. Secondly, we chosepn such that
the final samples had roughly the same size for alln up to some maximalnmax. In this way,
we could base our statistics only on complete ‘tours’ in the terminology of [10], avoiding
thereby the potentially dangerous problems discussed in that paper. Thus, our algorithm
should give an unbiased sample corresponding to ann-dependent fugacity depending on
pn. From this it is straightforward to estimate the distributionP(n) for a fixed chemical
potential µ̂s [10]. For each lattice size, our samples consisted of(3–10) × 106 ‘tours’.
This is also the number of independentshort chains, while the number of independent long
chains was much smaller of course. Thus, the relative error bars onP(n) increase from
< 10−3 for small n to O(1) for n = nmax. In all graphs they are comparable with the line
width or smaller.

The bulk critical potential for the sc lattice iŝµ∗s = −1.544 161± 0.000 001 [10, 19].
We now first analyse the scaling properties of the data. Dividing the partition function

ẐG(n, µ̂∗s ) by a factor of constant·nγ−1 (cf (37)) in figure 3 we show lnZ∗ as a function of
the scaling variablen/L1/ν for all system sizes simulated. Clearly scaling is well obeyed for
small values ofn/L1/ν , but deviations occur for larger values. With increasingL, however,
the results for alln/L1/ν seem to approach a universal master curve. The scale of lnZ∗
should be noted: forL & 64 deviations from universality occur for valuesZ∗ . e−100.
In terms of the chain length distribution this implies that we are deep in the tail, where
P(n, µ̂∗s ) is essentially zero.

A more detailed analysis indicates that for allL deviations from scaling become visible
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Figure 3. Monte Carlo data of the scaling function for various sizes of the container.

roughly for n/Ld = c & 0.05. They could be due to effective three-body forces which
under renormalization are generated automatically by products of two-body interactions
within short parts of the chain. Such forces are known to lead to violations of scaling
with increasing concentration and have been ignored within our theoretical model. For the
present problem three-body forces even for small concentrationsc ≈ 0.01 could have a
large effect since they correct the leading term∼ u0S

2/Ld = u0L
dc2 in the exponential of

equation (28). This term becomes large in the dense limit, so that even small corrections
of the relative order ofc could be visible inẐG(n, µ̂s).

In the further analysis we restrict ourselves to the scaling range, where the dominant
variation of the chain length distribution takes place. In our theoretical model the bulk
critical chemical potential corresponds tôµs − µ̂∗s = 0. For an optimal fit of the data
we introduce aL-dependent shift of the critical chemical potential (or in the magnetic
language the critical temperature), i.e. the critical chemical potentialµ̂∗s (L) now depends
on the finite size of the container. Then the differenceµ̂L = µ̂∗s (L) − µ̂∗s is expected to
scale like constant·L−1/ν [16, 20]. The second fit parameter is the microstructure dependent
constantB. It must be the same for all values ofL. Figures 4 and 5 show fits of the
simulation data with this ansatz for the smallest(L = 8) and the largest(L = 256) system.
In figure 4 we also included the zero-loop order result for the partition function to show
the one-loop improvement of the theoretical curves. All theoretical curves use the same
nonuniversal constantB = 0.4631. The values for the other fit parameter,µ̂L, are listed in
table 1.

Figure 6 shows the experimental data and the theoretical curves for all considered linear
dimensions of the lattice in one doubly logarithmic plot. The theoretical results are in very

Table 1. Shift of the critical chemical potential.

L 8 16 32 64 128 256

µ̂L −0.022 −0.007 18 −0.002 28 −0.000 71 −0.000 22 −0.000 069
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Figure 4. Partition function at the critical chemical potential(µ̂s = µ̂∗s ) for L = 8.
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Figure 5. Partition function at the critical chemical potential(µ̂s = µ̂∗s ) for L = 256.

good agreement with the simulation data. The slight overestimation for small chain lengths
is consistent with the fact that self-avoiding walks on the cubic lattice approach the fixed
point from the strong coupling side [21].

In the doubly logarithmic plot ofµ̂L (figure 7) it is seen that̂µL ∼ constant· L−1/ν ,
a least squares fit givesν = 0.599, which, taking into account the limited accuracy of our
determination ofµ̂L, is in good agreement with the known value 0.588.

So far we have compared theory and numerical data at the critical chemical potential
µ̂∗s . As shown in figures 4–6 we find excellent agreement in all the data range where
Ẑ(n) & 0.01. We find, however, sizeable deviations in the extreme tail of the chain length
distribution, whereẐ(n, µ̂∗s ) . 10−100. Clearly this region is irrelevant for̂µs ≈ µ̂∗s , but
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Figure 6. Partition functions at the critical chemical potential(µ̂s = µ̂∗s ) for L =
8, 16, 32, 64, 128, 256. The Monte Carlo data are represented by the dotted curves, the
theoretical curves are marked by the full curves.
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Figure 7. Shift of the critical chemical potential̂µL = µ̂∗s (L) − µ̂∗s . The full line is a least
squares fit givingν = 0.599.

increasingµ̂s , i.e. going to more dense systems, we shift the maximum ofP(n, µ̂s) into
the region of largern, where the deviations are observed. Related to that feature is the
fact that the equation of statec = c(µ̂s, L) as determined from the computer experiment
(figure 8) does not quite fit with the theoretical result. As shown in figure 8 in the computer
experimentc(µ̂s, L) reaches its asymptotic valuec(µ̂s,∞) from above monotonically. In
contrast, the theoretical curves for differentL cross each other (see figure 2), an effect
reduced, but not suppressed completely by taking into account theL-dependent shift of
µ̂∗s (L). This deviation among theory and data might indicate the importance of higher loop
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Figure 8. Segment density as a function of the chemical potential(µ̂∗s − µ̂s ) for various sizes
of the container, determined from the Monte Carlo data.

corrections in the theory, but part of it also might be due to a violation of the strict scaling
limit due to three-body forces in the simulation.

5. Summary

We have calculated the partition function for a single polymer in a finite box with periodic
boundary conditions to one-loop order. The obtained expression has a finite size scaling form
and covers the whole crossover from the dilute to the highly overlapping limit. Depending on
the chemical potential per segmentµ̂s of an ensemble of chains the chain length distribution
yields very different results. While for̂µs < µ̂∗s the known results of the dilute limit are
recovered, a chemical potentialµ̂s > µ̂∗s describes the dense limit, where the chain length
distribution for a single chain becomes sharp. For a canonical ensemble of a large number
m of chains however this sharp distribution crosses over to the exponential behaviour of
the normal semidilute limit. By varyinĝµs , the different limits evolve smoothly from one
to another. This illustrates the absence of any peculiar effects in the dense limit even
for such a sensitive quantity as the chain length distribution. Furthermore, our calculation
demonstrates that the renormalized form of the perturbation theory of [8] also adequately
handles finite size effects in the ‘ordered’ phase of the zero-component field theory.

The theoretical results were compared with Monte Carlo simulations of self-avoiding
walks on a cubic lattice. Close to the critical chemical potential the data are very well fitted
with a shifted critical chemical potential depending on the finite size of the container. The
difference to the bulk critical potential scales like constant· L−1/ν .
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